We consider a problem for the Laplace equation in a circular sector wherein heat exchange takes place on the sides of the sector in accordance with Newton's law and a temperature distribution is specified on the circular arc.

1. In the plane of the complex variable w let D denote a circular sector of radius r and central angle π / m, where m is a positive integer:

$$
\begin{equation*}
D=\left\{w=r \exp (i \varphi): r \in(0,1), \varphi \in\left(-\frac{\pi}{2 m}, \frac{\pi}{2 m}\right)\right\} . \tag{1}
\end{equation*}
$$

We can represent the boundary ∂D of domain D in the form $\partial D=\gamma U \Gamma$, where $\gamma=\{w=r \exp$ $\left.\left(\pm i \frac{\pi}{2 m}\right): r \in[0,1]\right\}$, is the union of the sides of the sector and $\Gamma=\left\{w=\exp (i \varphi): \varphi \in\left[-\frac{\pi}{2 m}, \frac{\pi}{2 m}\right]\right\}$ is the arc of the sector; \bar{D} is the closure of domain $D ; w^{\prime}$ are points of arc Γ.

In the sector D we consider a stationary heat conduction problem involving heat exchange on the sides of the sector (on γ) in accordance with Newton's law with coefficient $h>0$ and a given temperature distribution $f\left(w^{\prime}\right)$ on the arc Γ; this problem may be reduced [1] to the following boundary value problem for the Laplace equation:

$$
\begin{gather*}
\Delta T(w)=0, w \in D \tag{2}\\
\frac{\partial}{\partial v} T(w)-h T(w)=0, w \in \operatorname{int} \gamma \tag{3}\\
T\left(w^{\prime}\right)=f\left(w^{\prime}\right), w^{\prime} \in \Gamma \tag{4}
\end{gather*}
$$

function $f\left(w^{\prime}\right)$ is continuous on Γ.
In the present paper we represent the solution of problem (2)-(4) in the form of a series expressed in terms of the system of functions $\left\{\Omega_{\mathrm{n}}(\mathrm{w})\right\}_{n=0}^{\infty}$:

$$
\begin{equation*}
T(w)=\sum_{n=0}^{\infty} a_{n} \Omega_{n}(w) \tag{5}
\end{equation*}
$$

possessing the following properties:
a) all the Ω_{n} are harmonic functions in D;
b) Ω_{n} satisfy, for $w=r \exp \left(\pm i \frac{\pi}{2 m}\right), r \in(0, \infty)$, a homogeneous boundary-value problem of the third kind:

$$
\begin{equation*}
\frac{\partial}{\partial \nu} \Omega_{n}(w)-h \Omega_{n}(w)=0 \tag{6}
\end{equation*}
$$

c) the set of functions $\left\{\Omega_{n}\right\}_{n=0}^{\infty}$ possesses the property of completeness on the arc Γ.

This method of solving problem (2)-(4) was proposed in [2]; it is close to the method presented in [3].
2. We decompose the set of functions $\left\{\Omega_{n}(w)\right\}_{n=0}^{\infty}$ into two subsets, one of which, $\left\{\Omega_{2 n}\right\}_{n=0}^{\infty}$, is symmetric and the other, $\left\{\Omega_{2 n-1}\right\}_{n=1}^{\infty}$, is antisymmetric with respect to the real axis:

Computing Center, Academy of Sciences of the USSR, Moscow. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 54, No. 1, pp. 133-139, January, 1988. Original article submitted December $30,1986$.

$$
\begin{equation*}
\Omega_{2 n}(w)=\Omega_{2 n}(\bar{w}), \Omega_{2 n-1}(w)=-\Omega_{2 n-1}(\bar{w}), w \in D . \tag{7}
\end{equation*}
$$

We seek $\Omega_{\mathrm{n}}(\mathrm{r} \exp i \phi)$ in the form:

$$
\begin{gather*}
\Omega_{2 n}(r \exp (i \varphi))=\sum_{j=0}^{\chi} A_{2 n}^{j} r^{\lambda_{2 n}+i} \cos \left(\lambda_{2 n}+j\right) \varphi \tag{8}\\
\Omega_{2 n-1}(r \exp (i \varphi))=\sum_{j=0}^{\chi} A_{2 n-1}^{j} r^{\lambda_{2 n-1}+j} \sin \left(\lambda_{2 n-1}+j\right) \varphi \tag{9}
\end{gather*}
$$

where we assume that k is a positive integral parameter and λ_{n} and A_{n} are real parameters. We note that the condition $\lambda_{n} \geq 0$ must be satisfied, for otherwise the functions Ω_{n} would be unbounded in D. It may be readily verified that the functions Ω_{n} of the form (8), (9) are harmonic in D. Substituting functions (8) and (9) into the condition (6), we obtain relations from which κ, λ_{n}, and A_{n} can be determined:

$$
\begin{align*}
& \sum_{j=0}^{x}\left(\lambda_{2 n}+j\right) A_{2 n}^{j} r^{\lambda_{2 n}+i-1} \sin \left(\lambda_{2 n}+j\right) \frac{\pi}{2 m}=h \sum_{j=0}^{x} A_{2 n}^{j} r^{\lambda_{2 n}+j} \cos \left(\lambda_{2 n}+j\right) \frac{\pi}{2 m} \tag{10}\\
& \sum_{j=0}^{x}\left(\lambda_{2 n-1}+j\right) A_{2 n-1}^{j} r^{\lambda_{2 n-1}+i-1} \cos \left(\lambda_{2 n-1}+j\right) \frac{\pi}{2 m}=h \sum_{j=0}^{x} A_{2 n-1}^{j} r^{\lambda_{2 n-1}+i} \sin \left(\lambda_{2 n-1}+j\right) \frac{\pi}{2 m} \tag{11}
\end{align*}
$$

Equating coefficients of like powers of r on the left and right sides of Eqs. (10) and (11), we obtain

$$
\begin{gather*}
\lambda_{3 n} A_{2 n}^{0} \sin \lambda_{2 n} \frac{\pi}{2 m}=0, \lambda_{2 n-1} A_{2 n-1}^{0} \cos \lambda_{2 n-1} \frac{\pi}{2 m}=0 ; \tag{12}\\
\left(\lambda_{2 n}+j\right) A_{2 n}^{j} \sin \left(\lambda_{2 n}+j\right) \frac{\pi}{2 m}=h A_{2 n}^{j-1} \cos \left(\lambda_{2 n}+j-1\right) \frac{\pi}{2 m} ; \tag{13}\\
\left(\lambda_{2 n-1}+j\right) A_{2 n-1}^{j} \cos \left(\lambda_{2 n-1}+j\right) \frac{\pi}{2 m}=h A_{2 n-1}^{j-1} \sin \left(\lambda_{2 n-1}+j-1\right) \frac{\pi}{2 m} ; \tag{14}\\
j=1, \ldots, x ; \\
h A_{2 n}^{x} \cos \left(\lambda_{2 n}+x\right) \frac{\pi}{2 m}=0, h A_{2 n-1}^{x} \sin \left(\lambda_{2 n-1}+x\right) \frac{\pi}{2 m}=0 . \tag{15}
\end{gather*}
$$

From relations (12) it follows that

$$
\begin{equation*}
\lambda_{n}=m n, n=0,1, \ldots \tag{16}
\end{equation*}
$$

and from relations (15) and (16) we obtain the equation

$$
\begin{equation*}
x=m \tag{17}
\end{equation*}
$$

Noting that the coefficients $A_{n} j, n=0,1, \ldots$ are determined to within an arbitrary factor, we put

$$
\begin{equation*}
A_{n}^{0}=1, n=0,1, \ldots \tag{18}
\end{equation*}
$$

From expressions (13) and (14) we then establish recursion relationships for the coefficicients $A_{n}{ }^{j+1}, j=0,1, \ldots, m-1$:

$$
\begin{equation*}
A_{n}^{j+1}=\frac{n}{m n+j+1} \frac{\cos j \frac{\pi}{2 m}}{\sin (j+1) \frac{\pi}{2 m}} A_{n}^{j}, n=0,1, \ldots \tag{19}
\end{equation*}
$$

Thus, the functions $\Omega_{n}(w), n=0,1, \ldots$ in Eqs. (8) and (9), with parameter values from Eqs. (16)-(19), satisfy the conditions a) and b) formulated in Sec. 1.
3. We show now that the system $\left\{\Omega_{n}\left(w^{\prime}\right)\right\}_{n=0}^{\infty}$ is minimal [4] in the space $\mathscr{L}_{2}(\Gamma)$. In fact, in the closed disk $\overline{\mathscr{D}}(\mathscr{D}=\{w=|w|<1\}) \quad$ we consider the set of functions $\left\{\sum_{j=0}^{m} B_{n}^{j} w^{m n+j}\right\}_{n=0}^{\infty}$.

Here $B_{2 n}{ }^{j}=A_{2 n}{ }^{j}, n=0,1, \ldots ; B_{2 n-1}{ }^{j}=-i A_{2 n-1} j, n=1,2, \ldots$. We assume the existence of numbers $d_{0}, d_{1}, \ldots, d_{N}$, such that for arbitrary n_{0} and $\varepsilon>0$ the following inequality is satisfied on \mathscr{D} :

$$
\begin{equation*}
\left|\sum_{j=0}^{m} B_{n_{0}}^{i} w^{m_{0}+j}-\sum_{\substack{n=0 \\ n \neq n_{0}}}^{N} d_{n} \sum_{j=0}^{m} B_{n}^{i} w^{m n+j}\right|<\varepsilon, w \in \partial \mathscr{D} . \tag{20}
\end{equation*}
$$

We introduce the notation

$$
\begin{equation*}
\Phi_{n_{0}}(w)=\sum_{i=0}^{m} B_{n_{0}}^{I} w^{m_{0}+j}-\sum_{\substack{n=0 \\ n=n_{0}}}^{N} d_{n} \sum_{j=0}^{m} B_{n}^{i} w^{m n+j} \tag{21}
\end{equation*}
$$

and, at the center of the disk, we represent the function $\Phi_{\mathrm{n}_{0}}(\mathrm{w})$, holomorphic in \mathscr{D} and continuous in \mathscr{D}, by means of the Cauchy formula [5]:

$$
\begin{equation*}
\Phi_{n_{0}}{ }^{{ }^{*}}(0)=\frac{1}{2 \pi i} \int_{\partial \mathscr{D}} \frac{\Phi_{n_{0}}(\exp (i \varphi))}{\exp (i \varphi)} d(\exp (i \varphi)) . \tag{22}
\end{equation*}
$$

Let $m \neq 1$; differentiating both sides of Eq. (22) $m n_{0}$ and $m n_{0}-1$ times, we obtain, taking relation (20) into account, conditions on the coefficients:

$$
\begin{equation*}
\left|1-d_{n_{0}-1} B_{n_{0}-1}^{m}\right|<\varepsilon,\left|B_{n_{0}-1}^{m-1} d_{n_{0}-1}\right|<\varepsilon . \tag{23}
\end{equation*}
$$

If $m=1$, then, differentiating the expression (22) in succession, $N+1 ; N, \ldots, 1,0$ times, we arrive at the system of inequalities

$$
\begin{gather*}
\left|d_{N} B_{N}^{1}\right|<\varepsilon,\left|d_{N}+d_{N-1} B_{N-1}^{1}\right|<\varepsilon, \ldots,\left|B_{n_{0}}^{1}-d_{n_{0}+1}\right|<\varepsilon, \tag{24}\\
\left|1-d_{n_{0}-1} B_{n_{0}-1}^{1}\right|<\varepsilon, \ldots,\left|d_{1}+d_{0} B_{0}^{1}\right|<\varepsilon,\left|d_{0}\right|<\varepsilon .
\end{gather*}
$$

Inconsistency of conditions (23) and (24) is easily verified; but this means that inequality (20) is not satisfied for $w \in \partial \mathscr{D}$. Thus, the system $\left\{\sum_{j=0}^{m} B_{n}^{i} e^{m n+i}\right\}_{n=0}^{\infty}$ is minimal in $C(\partial \mathscr{D})$, which implies minimality of $\left\{\Omega_{n}\left(w^{\prime}\right)\right\}_{n=0}^{\infty}$ in $\mathscr{L}_{2}(\Gamma)$.

We now prove the following
Proposition I. The set of functions $\left\{\Omega_{n}\left(w^{\prime}\right)\right\}_{n=0}^{\infty}$ forms a Riesz basis in $\mathscr{L}_{2}(\Gamma)$.
We consider the series

$$
\begin{equation*}
\sum_{n=0}^{\infty} \rho_{n}^{2}, \tag{25}
\end{equation*}
$$

where ρ_{n} is given by the expressions.

$$
\begin{gather*}
\rho_{2 n}^{2}=\int_{\Gamma}\left(\cos 2 n m \varphi-\Omega_{2 n}\left(w^{\prime}\right)\right)^{2} d \varphi, n=0,1, \ldots, \tag{26}\\
\rho_{2 n-1}^{2}=\int_{\Gamma}\left(\sin (2 n-1) m \varphi-\Omega_{2 n-1}\left(w^{\prime}\right)\right)^{2} d \varphi, n=1,2, \ldots \tag{27}
\end{gather*}
$$

From conditions (16) and (17) it follows that

$$
\begin{equation*}
\rho_{n}^{2}=O\left(\frac{1}{n^{2}}\right), n=0,1, \ldots \tag{28}
\end{equation*}
$$

i.e., series (25) converges; but this means that the system $\left\{\Omega_{\mathrm{n}}\left(\mathrm{w}^{\prime}\right)\right\}_{\mathrm{n}=0}^{\infty}$ is close in the mean square sense to the system $\{\cos 2 \mathrm{~nm} \phi, \sin (2 \mathrm{n}+1) \mathrm{m} \phi\}_{\mathrm{n}=0}^{\infty}$, and is obviously a Riesz basis in $\mathscr{L}_{2}(\Gamma)$ [6]. Proposition 1 is a consequence of a theorem of N. K. Bari [6] relating to stability of the property of a system to form a Riesz basis for all minimal systems close to mean square.
4. We seek an approximate solution $\mathrm{T}^{\mathrm{K}}(\mathrm{w})$ of problem (2)-(4) as a partial sum of series (5):

$$
\begin{equation*}
T^{K}(w)=\sum_{n=0}^{K} a_{n}^{K} \Omega_{n}(w), \tag{29}
\end{equation*}
$$

where the coefficients are determined from the condition of minimum deviation of $\mathrm{T}^{\mathrm{K}}\left(\mathrm{w}^{\mathrm{d}}\right)$
from $f\left(w^{\prime}\right)$ in the norm of the space $\mathscr{L}_{2}(\Gamma)$. From the results presented in [7] and also Proposition I it follows that for all n we have existence of the finite limit

$$
\begin{equation*}
\lim _{K \rightarrow \infty} a_{n}^{K}=a_{n} \tag{30}
\end{equation*}
$$

and convergence of the sequence $\left\{T^{K}\left(w^{\prime}\right)\right\}_{K=0}^{\infty}$ on Γ as $K \rightarrow \infty$ to the function $f\left(w^{\prime}\right)$.
From the properties of the coefficients a_{n} described in [6] it follows that $T(w)$ from Eq. (5) represents a solution of the boundary-value problem (2)-(4).
5. The method of solution proposed admits certain generalizations.
1°. Let $D_{0}=\left\{w=r \exp (i \varphi): r \in[0,1], \varphi \in\left(0, \frac{\pi}{2 m}\right)\right\}$ be the upper half of sector D, let $D, \Gamma_{0}=$ $\left\{w=\exp (i \varphi): \varphi \in\left(0, \frac{\pi}{2 m}\right)\right\}$ be the arc of its boundary, and let the function $T_{ \pm}$be, respectively, solutions of the following boundary-value problems:

$$
\begin{gather*}
\Delta T_{ \pm}(w)=0, w \in D_{0} \tag{31}\\
\left(\frac{\partial}{\partial v}-h\right) T_{ \pm}(w)=0, w=r \exp (i \varphi), \varphi \in[0,1] \tag{32}\\
\mathscr{H}_{ \pm} T_{ \pm}(r)=0, r \in[0,1] \tag{33}\\
T_{ \pm}\left(w^{\prime}\right)=f\left(w^{\prime}\right), w^{\prime} \in \Gamma_{0} \tag{34}
\end{gather*}
$$

Here $\mathscr{H}_{+} T_{+}=\frac{\partial}{\partial v} T_{+}, \mathscr{H}_{-} T_{-}=T_{-}$.
The sets of functions $\left\{\Omega_{2 n}(w)\right\}_{n=0}^{\infty}$ and $\left\{\Omega_{2 n-1}\right\}_{n=1}^{\infty}$ then satisfy conditions (31) and (32), and also, as a consequence of property (7), the equations $\mathscr{H}_{+} \Omega_{2 n}(r)=0, n=0,1, \ldots$, and $\mathscr{H}_{\Omega_{2 n-1}}(r)=0, n=1,2, \ldots$ are valid. An approximate solution of problem (31)-(34) can be written in the form

$$
\begin{equation*}
T_{ \pm}^{K}(w)=\sum_{n=0}^{K} a_{2 n}^{K} \Omega_{2 n}(w), T_{-}^{K}(w)=\sum_{n=1}^{K} a_{2 n-1}^{K} \Omega_{2 n-1}(w) \tag{35}
\end{equation*}
$$

where the coefficients a_{n}^{K} are determined by the method of least squares.
2°. When, instead of condition (4), we are given a nonhomogeneous condition of the second or third kind on the arc Γ in problem (2)-(4),

$$
\begin{gather*}
\frac{\partial}{\partial r} T\left(w^{\prime}\right)=f\left(w^{\prime}\right), w^{\prime} \in \Gamma \tag{36}\\
\frac{\partial}{\partial r} T\left(w^{\prime}\right)-h_{\Gamma} T\left(w^{\prime}\right)=f\left(w^{\prime}\right), w^{\prime} \in \Gamma ; \tag{37}\\
h_{\Gamma}=\text { const }>0
\end{gather*}
$$

we also seek an approximate solution in the form (29).
6. Problem (2)-(4) was solved numerically for various values of the parameters m, h, and K and for a different form of function $f\left(w^{\prime}\right)$ in condition (4). The controlling factor here was the mean-square error:

$$
\delta(K, f)=\left(\int_{\Gamma}\left|f\left(w^{\prime}\right)-T^{K}\left(w^{\prime}\right)\right|^{2}\left|d w w^{\prime}\right|\right)^{1 / 2}
$$

Results of our calculations for $h=1 / 2, f\left(w^{\prime}\right)=1$, and $K=10$ are shown in Figs. $1-3$.
In Fig. 1 results are shown for the case $m=1$ (D, a semicircular region); the error $\delta=3.47 \cdot 10^{-3}$; I is the boundary of domain D; isotherms $T=$ const for T values $0.8,0.85$, 0.9 , and 0.95 correspond to curves a, b, c, and d, respectively.

Fig. 1
Fig. 2
Fig. 1. Isotherms for $m=1$.
Fig. 2. Isotherms for $m=4$.

Fig, 3. Temperature
at angle vertex.

In Fig. 2 results are shown for the case $m=4$ (D, a sector with central angle $\pi / 4$); the error $\delta=4.32 \cdot 10^{-3}$; I is the boundary ∂D; isotherms $T=$ const for T values $0.4,0.5$, $0.6,0.7,0.8$, and 0.9 correspond to curves a, b, c, d, e, and f, respectively.

Temperature $T(0)$ at the vertex of the central angle of the sector is shown as a function of m in Fig. 3.

NOTATION

r, ϕ, polar coordinates; i, imaginary unit; \bar{w}, complex conjugate of $w ; D$, circular sector; ∂D, boundary of circular sector; π / m, central angle of sector; int γ, arc γ minus endpoints; $\partial / \partial \gamma$, derivative along exterior normal to contour; Δ, Laplace operator; T, temperature; h, heat transfer coefficient; $C(\partial D)$, space of functions continuous on $\partial D ; \mathscr{D}=\{w:|w|<$ $1\}$, unit disk; $\mathscr{L}_{2}(\Gamma)$, space of functions square-summable on arc Γ.

LITERATURE CITED

1. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics [in Russian], Moscow (1972).
2. V. I. Vlasov, Boundary Value Problems in Domains with Curvilinear Boundaries [in Russian], Moscow (1987).
3. V. I. Vlasov and A. P. Prudnikov, Modern Problems of Mathematics [in Russian], Itogi Nauki i Tekhniki, Vol. 20, VINITI, Akad. Nauk SSSR, 3-36 (1982).
4. S. Kaczmarz and H. Steinhaus, Theory of Orthogonal Series, Chelsea Publ.
5. M. A. Lavrent'ev and B. V. Shabat, Methods of the Theory of Functions of a Complex Variables [in Russian], Moscow (1966).
6. N. K. Bari, Uch. Zap. Mosk. Gos. Univ., 4, No. 148, 69-107 (1951).
7. S. G. Mikhlin, Numerical Realization of Variational Methods [in Russian], Moscow (1966).
